
Capt2PDF with 2024/VI

© 2021 by archivista.ch | 1

Record screenshots and create PDF files
Egg, June 12, 2024: Artificial intelligence (AI) seems to be everywhere at the
moment. Microsoft is currently gaining some notoriety with the new Recall
service announced for Windows 11, which is intended to become the user’s
memory on their computer, so to speak. Screen shots are taken every x
seconds. This data is processed in the background in an AI “fair” way so that
later searches are possible. Capt2PDF is a new tool for Linux. Unlike Microsoft
Recall, Capt2PDF works on the local desktop and the user retains control of the
data.

That’s why Capt2PDF is now available for the desktop
There are two basic approaches to recording screen content. OBS (Open
Broadcasting System) is currently the most commonly used. This involves
creating movie files (including sound) of screen activity. Text and speech
recognition can be used to create searchable PDF files.
Movie files created with OBS require a lot of space, as approx. 30 images are
recorded per second. The space required per minute is in the region of several
dozen MBytes. The subsequent text and speech recognition require a lot of
power, and there is currently no tool that does this job automatically.
The classic approach is an alternative. Screen copies can be created on any
Linux desktop with ‘PrintScreen’ (top third right button). If the aim is to
document some subsequent processes (e.g. in support), the undertaking soon
becomes labor-intensive. The individual image files must be converted into one
file. In most cases, a PDF file is created. To make the content searchable, text
recognition must be started etc. etc.

https://archivista.ch/cms/wp-content/uploads/2024/06/etappe2410.jpg
https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 2

Microsoft Recall or AI as a “role model”?
In itself, Microsoft Recall addresses precisely this concern. However, the
automatic recording of content is nothing new. What is new is simply that the
creation of screen copies is automated in real time so that the data can be
searched.
The fact that the cloud should/must be used in some way for this remains a
mystery. Obviously, it is more about manufacturers wanting to “copy” as much
data as possible.
Unfortunately, this is not only the case with Microsoft and Windows. Apple has
just announced that its products will be equipped with AI functions across the
board. According to the “article” on the Apple presentation of 10.6.24, a report
(in German) appeared on Swiss television (SRF), see also the document
created with Capt2PDF (in German) here. Quote from it:
The functions have been deeply embedded in the operating systems for iPhone,
Mac and iPad, emphasized software boss Craig Federighi. This means that
Apple’s AI models have access to the information users need in order to be
useful to them. Many of the models run directly on the devices, emphasized
Federighi. If necessary, the cloud is also connected – but with an encrypted
connection. The Apple software decides on a case-by-case basis whether a task
should be performed locally or via the cloud.
For all those who do not see “red” here, the following should be noted.
1. An operating system does not “only” have access to necessary information, it
always has access to all data. How else would it be possible to save a file, for
example? However, this does not mean that an AI has to work.
2. If an operating system cannot be used, it makes no sense. However, no AI is
necessary to be able to work, either locally or in the cloud.
3. No software decides on a case-by-case basis whether to outsource personal
data to the cloud. With any software, it is clear from the outset what happens
where and how. How stupid are users taken for? How “limited” are the media
when such madness is published in this way?
Apart from the fact that the above example is intended to show that a lot of
nonsense is being done under the term AI, this article can also be used to show
how easy Capt2PDF is to use.
The source code of Capt2PDF can be found below. The program can be started
on a terminal with perl capt2pdf 5 (recording with an interval of 5 seconds).
The recording is stopped with perl capt2pdf 0. It makes sense to use a key

https://archivista.ch/cms/wp-content/uploads/2024/06/etappe1209.jpg
https://www.srf.ch/news/wirtschaft/neue-funktionen-von-apple-iphone-co-werden-mit-vielen-ki-moeglichkeiten-aufgepeppt
https://www.srf.ch/news/wirtschaft/neue-funktionen-von-apple-iphone-co-werden-mit-vielen-ki-moeglichkeiten-aufgepeppt
https://archivista.ch/cms/wp-content/uploads/2024/06/screen-2024-06-11_092038.pdf
https://archivista.ch/cms/wp-content/uploads/2024/06/screen-2024-06-11_092038.pdf
https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 3

combination for these two commands.
On the AV multimedia desktop, you can use the key combination
Ctrl+PrintScreen to start the recording or Shift+Ctrl+PrintScreen to
end the recording. In between, the screen is recorded at intervals of 5
seconds. After exiting the program, the finished searchable PDF file is displayed
on the desktop after a few seconds. Simple, isn’t it?

Does Capt2PDF need an AI or a cloud?
Not in the slightest. Capt2PDF works 100% locally, any reasonably modern CPU
is capable of doing the job. Capt2PDF (Zip file with sources here) currently
comprises around 260 lines, which are published here. If you are not quite so
technically minded or not interested in it, just read on to the next paragraph.
#!/usr/bin/perl
capt2pdf (c) v0.2 - 2024-06-12 by Archivista GmbH, Urs
Pfister, GPLv2
program to capture every x seconds a screenshot, check for
at least 1%
difference in the screens (compare from ImageMagick) and
if so, set
resolution (convert from ImageMagick) and send it to
tesseract for
background ocr (incl. balance checker for 1/2 of cpus),
needed programs:
scrot|spectacle|gnome-
screenshot,compare,convert,pdftk,tesseract,zenity

use strict;
use constant PFAD0 => "/home/archivista/data";
use constant PFAD1 => PFAD0."/screens";
use constant PFAD => `echo -n \$HOME`.'/screens'; # home
folder / logs etc
if (-e PFAD0) { # arrange paths if it is
AVMultimedia/ArchivistaBox
 mkdir PFAD1 if !-e PFAD1;
 doit("ln -s ".PFAD1." ".PFAD) if !-e PFAD
} else { # all other we take screens folder in home
directory

https://archivista.ch/cms/wp-content/uploads/2024/06/etappe2502.jpg
https://archivista.ch/cms/wp-content/uploads/2024/06/capt2pdf.zip
https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 4

 mkdir PFAD if !-e PFAD;
}
use constant RUNS => PFAD."/capt2pdf.wrk"; # running (has
screen pixels)
use constant OCRLANGS => PFAD."/capt2pdf.ocr"; # languages
for tesseract
use constant X11CAPT => "/usr/bin/scrot"; # X11 screen
caputre program
use constant X11OPT => ""; # options (last one needs to be
file flag)
use constant WAYCAPT => "/usr/bin/spectacle"; # WAYLAND
screen capture program
use constant WAYOPT => "-f -b -n -o"; # options, last one -o
for file name
use constant WAYCAPT2 => "/usr/bin/gnome-screenshot"; #
WAYLAND gnome
use constant WAYOPT2 => "-f"; # options, last one -o for
file name
use constant CONVERT => "/usr/bin/convert"; # set dpi
(resolution)
use constant COMPARE => "/usr/bin/compare"; # comparing
images (ImageMagick)
use constant PDFTK => "/usr/bin/pdftk"; # program to
compbine pdf pages together
use constant TESSERACT => "/usr/bin/tesseract"; # ocr
recognition
use constant TESSOCR => "eng+deu"; # default languages for
tesseract
use constant RESDPI => "300x300"; # set image res (if no at
all, set '')
use constant XRANDR => "/usr/bin/xrandr"; # get resolution
of screen (1st one)
use constant PDFVIEW => "/usr/bin/qpdfview"; # open file
with pdf viewer
use constant MSG => "/usr/bin/zenity"; # send message with
zenity
use constant NOTE => "/usr/bin/notify-send"; # send message
with notify-send
use constant TIT => "Capt2PDF"; # title for application
use constant START => "start..."; # start message
use constant STOP => "stop..."; # stop message
use constant PERL => "/usr/bin/perl"; # get resolution of
screen (1st one)
use constant D0 => " 2>/dev/null"; # suppress error messages
my $mode = shift; # 0=stopit, 2-60=startit, file=capture
(called from prg)
my $lang = shift; # language string for tesseract
my $job = $0;
die "$0 mode [lang] => 0=stop,2-60=capt.time,deu+eng=ocr
lang" if $mode eq "";
logit("$0 called with $mode");
if ($mode eq "0" || $mode eq "") {
 stopit(); # stop capturing and create pdf file
} elsif ($mode>=2 && $mode<=60) {
 startit($mode,$lang); # start capturing (must be between 2
and 60 seconds)
} elsif (-e "$mode") {

https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 5

 capture($mode); # a new page hase arrived, so process it
}

sub doit { # process a system call and log results
 my ($cmd) = @_;
 my $res=system($cmd);
 logit("$res=>$cmd");
 return $res;
}

sub logit { # log file to get infos about what was done
 my ($msg) = @_;
 open(FOUT,">>".PFAD."/av.log");
 print FOUT "$msg\n";
 close(FOUT);
}

sub getpixels { # get pixel of your screen (if no xrandr =>
then fullhd)
 my $screenx = 1980; my $screeny = 1080;
 my $xrandr = XRANDR;
 if (-e $xrandr) {
 my $xrandr = `$xrandr | grep '*'`;
 $xrandr =~ /([0-9]+)(x)([0-9]+)/;
 if ($1>0 && $2 eq "x" && $3>0) {
 $screenx = $1;
 $screeny = $3;
 }
 }
 my $maxpixels = $screenx*$screeny;
 logit("resolution of screen:$screenx:$screeny");
 return $maxpixels;
}

sub writefile { # write simple text file
 my ($file,$cont) = @_;
 open(FOUT,">$file");
 print FOUT "$cont";
 close(FOUT);
}

sub stopit { # stop capturing and create pdf file
 my $pfad = PFAD; my $ocr = -1; my $capt = 0; my $first=1;
 doit("rm ".RUNS) if -e RUNS;
 noteit(STOP,5);
 for(my $c=2;$c<10;$c++) { # wait for termination of ocr
 $ocr = countJobs(); # default is tesseract
 my $conv = countJobs(CONVERT);
 my $comp = countJobs(COMPARE);
 if (iswayland() eq "") {
 $capt = countJobs(X11CAPT);
 } else {
 $capt = countJobs(WAYCAPT) if -e WAYCAPT;
 $capt = countJobs(WAYCAPT2) if -e WAYCAPT2;
 }
 logit("ocr jobs:$ocr--conv:$conv--comp:$comp--
capt:$capt");

https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 6

 if ($ocr==0 && $conv==0 && $comp==0 && $capt==0) {
 last if $first==0; $first=0;
 }
 sleep $c;
 }
 if ($ocr>0) {
 logit("we stop waiting, $ocr ocrjobs left");
 } else {
 logit("ocr processing has ended");
 }
 my @files = <$pfad/av-*.pdf>;
 my $file = $files[0];
 if (-e $file) {
 $file =~ s/(av-)/screen-/g; # unique name so it is not
killed next time
 my $prg = PDFTK." ".join(" ",@files)." output
$pfad/all.pdf";
 doit($prg);
 if (-e "$pfad/all.pdf") {
 doit("rm -f $pfad/av-*");
 doit("mv $pfad/all.pdf $file");
 }
 }
 doit(PDFVIEW." $file".D0." &") if -e PDFVIEW && PDFVIEW ne
"" && -e $file;
 doit("rm ".OCRLANGS) if -e OCRLANGS;
}

sub startit { # start capturing of sceenshots
 my ($wait,$lang) = @_;
 my $pfad = PFAD;
 $lang = ocrlangs($lang);
 if (!-e RUNS && !-e OCRLANGS) {
 noteit(START,2);
 my $pixels = getpixels();
 writefile(RUNS,$pixels);
 writefile(OCRLANGS,$lang);
 doit("rm -f /tmp/av*.png");
 doit("rm -f /tmp/av*.gif");
 doit("rm -f $pfad/av-*");
 } else {
 logit("$0 already started");
 }
 my $file = "/tmp/av-current.png";
 $wait--; # 1 second pause between ending capturing and
post processing
 my $cmd = X11CAPT." ".X11OPT;
 if (iswayland() ne "") {
 $cmd = WAYCAPT." ".WAYOPT if -e WAYCAPT;
 $cmd = WAYCAPT2." ".WAYOPT2 if -e WAYCAPT2;
 }
 my $prg = "sleep 1;".PERL." $0 $file".D0;
 doit("while [-e ".RUNS."];do sleep $wait;$cmd $file
".D0.";$prg;done &");
}

sub ocrlangs { # check and combine ocr languages for

https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 7

tesseract
 my ($lang) = @_;
 my $langs = "";
 my @langs = split(/\,/,$lang);
 foreach my $lng (@langs) {
 if ($lng eq "deu" || $lng eq "frk" || $lng eq "fra" ||
$lng eq "ita" ||
 $lng eq "spa" || $lng eq "nld" || $lng eq "eng" ||
$lng eq "deu-frak") {
 $langs .= "+" if $langs ne "";
 $langs .= $lng;
 }
 }
 $langs = TESSOCR if $langs eq "";
 return $langs;
}

sub capture { # process captured page (incl. check if we
have differences)
 my ($file2) = @_;
 my $file = "/tmp/av-".timestamp().".png";
 doit("rm -f $file") if -e $file;
 doit("mv $file2 $file") if -e $file2 && !-e $file;
 my $pfad = PFAD;
 my @lines = <"/tmp/av-*.png">;
 my $current = pop @lines;
 my $last = pop @lines;
 if ($last ne "" && $file eq $current) {
 logit("curr:$current");
 logit("last:$last");
 my $check = $last.".gif";
 my $cmp = COMPARE;
 my $pixeldiff= int `$cmp -metric AE -fuzz 5% $last $file
$check 2>&1`;
 my $pixeldiff1 = $pixeldiff*100; # scale 1% to 100% for
comapring
 my $chk = "cat ".RUNS.D0;
 my $maxpixels = `$chk`;
 if ($pixeldiff1>$maxpixels) {
 logit("SAVENEW with $pixeldiff");
 captureOCR($last);
 } else {
 logit("NEARTO with $pixeldiff");
 }
 doit("rm $last") if -e "$last";
 doit("rm $check") if -e "$check";
 }
}

sub captureOCR { # create a pdf page from current screen
shot
 my ($file) = @_;
 my $pfad = PFAD; my $langs = ""; my $chk = OCRLANGS;
 $langs = `cat $chk` if -e "$chk";
 $langs = TESSOCR if $langs eq "";
 my $cpus = `cat /proc/cpuinfo | grep processor | wc -l`;
 my $ocrjobs = countJobs();

https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 8

 if ($ocrjobs*2<=$cpus) {
 my @parts = split(/\//,$file);
 my $fname = pop @parts;
 @parts = split(/\./,$fname);
 my $ext = pop @parts;
 my $fbase = join('.',@parts);
 if (!-e "$pfad/$fbase.pdf") {
 if (RESDPI ne "") {
 my $cmd = CONVERT." $file -density ".RESDPI." -units
pixelsperinch ".
 "$pfad/$fbase.jpg";
 doit($cmd);
 $file = "$pfad/$fbase.jpg" if -e "$pfad/$fbase.jpg";
 }
 my $cmd = TESSERACT." -l $langs $file $pfad/$fbase pdf
".D0." &";
 doit($cmd);
 }
 }
}

sub countJobs { # give back the number of tesseract sessions
 my ($job) = @_;
 $job = TESSERACT if $job eq "";
 my $jobs = `ps ax | grep $job | grep -v grep | wc -l`;
 chomp $jobs;
 $jobs=0 if $jobs eq "";
 return $jobs;
}

sub timestamp { # give back current time stamp
 my @t = localtime(time());
 my $Y = $t[5] + 1900;
 my $M = sprintf("%02d", $t[4]+1);
 my $D = sprintf("%02d", $t[3]);
 my $h = sprintf("%02d", $t[2]);
 my $m = sprintf("%02d", $t[1]);
 my $s = sprintf("%02d", $t[0]);
 return $Y."-".$M."-".$D."_".$h."-".$m."-".$s;
}

sub iswayland { # check if it is wayland display manager
 return `echo -n \$XDG_SESSION_TYPE`;
}

sub noteit {
 my ($msg,$wait) = @_;
 if (-e NOTE) {
 $wait=$wait*1000;
 doit(NOTE." ".TIT." $msg -t $wait".D0);
 } elsif (-e MSG) {
 doit(MSG." --timeout=$wait --info --title=".TIT." --
text=$msg".D0);
 }
}
The program was developed for AVMultimedia and ArchivistaBox. However, it
should also run on most other Linux desktops. Under X11 the program scrot is

https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 9

used for screen captures, in Wayland it is spectacle or gnome-screenshot.
It should be mentioned at this point that the programs compare, convert,
tesseract and pdftk must be available in addition to the capture tool.
Capt2PDF starts a one-liner in the bash, which creates screen copies until
Capt2PDF is terminated. After a screenshot has been created, Capt2PDF is
started, specifying the current image, and from there the text recognition (OCR)
is tesseract in the background.
With the ImageMagick utility program compare, the aim is to find out whether
the current screenshot differs from the last one. Only then does it make sense to
create a searchable PDF file from it. Currently, 1% of the pixels on the screen
must change, otherwise the copy is discarded. This means that no new screens
or PDF pages are created for pure mouse movements or updated status
displays.
If there are more than 1% changed pixels, tesseract is called. Before text
recognition is started, the desired resolution (dpi) is stored in the image file
using convert. 300 dpi produces good results for text recognition (OCR) on all
sides. On a 4K screen with 3860×2160 pixels, plus/minus approximately an A4
page in landscape format with 300dpi is available (3508×2480 pixels for A4).

The pages are created directly when the pages are recorded. Capt2PDF checks
the number of CPU cores to ensure that slow CPUs (processors) are not
“overloaded”. If more than half of the CPUs are in use for tesseract, no more
text recognition takes place until sufficient resources are available again.
Capt2PDF becomes “somewhat” forgetful here. It should be noted, however,
that this only occurs with very old processors; as a rule, tesseract needs
approx. 2 seconds for one page.
The corresponding PDF files are stored in the home directory (e.g.
/home/arcihvista) under screens as individual pages. When Capt2PDF is
closed, pdftk is used to create the complete PDF file. This process takes barely
more than five to ten seconds, even for hundreds of pages. Finally, the
searchable PDF file is displayed using the qpdfview viewer.
A short commercial at this point: Anyone who requires further evaluation or
integral searchability of multiple PDF files will find ArchivistaBox a good
workhorse. If you don’t want to use a fully-fledged document management
system (DMS), you can of course also merge several searchable PDF files
created in this way into one file. The corresponding call is simple:
pdftk file1.pdf file2.pdf output allfiles.pdf

https://archivista.ch/cms/wp-content/uploads/2024/06/etappe0314.jpg
https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 10

Capt2PDF is of course open source (GPLv2). It was developed for the Linux
distribution AVMultimedia (and therefore also for the ArchivistaBox) and is
available there from version 2024/VI via the key combinations Ctrl+PrintScreen
or Shift+Ctrl+PrintScreen. With a current size of approx. 260 lines of code, it is a
handy tool for conveniently and easily capturing content when researching on
the Internet, for example. It should be noted that content recorded in this way
may not be placed on the Internet at will (more on this below).

Capt2PDF or AI: Pandorra’s box
The example of the (almost) unedited Apple press release used here,
which ends up on the main page of Swiss television (Capt2PDF copy
here), fits well with the current AI issue, because it can be used as an example
to show the contradictions that are currently arising. It should be clear that a
private individual is allowed to save such an article. But is an operating system
allowed to store the information created in this way or the information obtained
from it in the cloud?
Where would AI be if copyright-protected content wasn’t used billions of times to
train AI? How can authors defend themselves against their content being used
by third parties? With the Capt2PDF tool presented here, all work is done on a
local computer. What happens when these files leave the local computer?
For example, does the copy created here with Capt2PDF contain
copyrighted content? What happens if an operating system creates such copies
without being asked and they become publicly accessible? On the subject of
copyright, please refer to anwalt.de (in German) and the judgment cited
there (quote):
A work is generally only protected by copyright if it has a certain level of
creativity – i.e. it must not be something commonplace – and contains a
personal intellectual achievement. In this respect, press releases are regarded
as so-called “small coin”, i.e. as a less sophisticated text which, however, just
reaches the lowest limit of copyright protection (see also LG Hamburg, judgment
of January 31, 2007, Ref.: 308 O 793/06).
In the case of the (excerpt) of the SRF article published here, the
situation appears clear in this context. Even if it exceeds the copyright
threshold, it is a criticism of the media’s handling of AI and a solution with
Capt2PDF in order to show what is going wrong and how it can be done better.
The Pandorra’s box is that, for example, recording or creating searchable
content is currently not trivial for users. The tech connoisseurs will claim that

https://archivista.ch/cms/wp-content/uploads/2024/06/etappe0501.jpg
https://www.srf.ch/news/wirtschaft/neue-funktionen-von-apple-iphone-co-werden-mit-vielen-ki-moeglichkeiten-aufgepeppt
https://www.srf.ch/news/wirtschaft/neue-funktionen-von-apple-iphone-co-werden-mit-vielen-ki-moeglichkeiten-aufgepeppt
https://archivista.ch/cms/wp-content/uploads/2024/06/screen-2024-06-11_092038.pdf
https://archivista.ch/cms/wp-content/uploads/2024/06/screen-2024-06-11_092038.pdf
https://archivista.ch/cms/wp-content/uploads/2024/06/screen-2024-06-11_092038.pdf
https://www.anwalt.de/rechtstipps/urheberschutz-auch-fuer-pressemitteilungen_018468.html
https://www.srf.ch/news/wirtschaft/neue-funktionen-von-apple-iphone-co-werden-mit-vielen-ki-moeglichkeiten-aufgepeppt
https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 11

this is exactly why AI exists. The public perception (especially in the media) is
that AI is essential.That’s why you should take a closer look at such “articles”. If
articles are not labeled with full names, with phrases like ‘Siri is getting even
smarter’, it could almost give rise to the suspicion that AI was at work here. It is
fitting that the images come from GettyImages. In the first image, the text ‘Siri’
is mixed with ‘AI’ (definitely AI-level quality) and the second image reads:
“Image: Apple CEO Tim Cook”.

It would probably be correct to write, the boss does appear in a movie on a
sensationally large display. Even if the article had copyright qualities, an
(almost) complete publication seems appropriate here because it can show how
blurred information is handled in connection with AI. Without tools such as
Capt2PDF, however, it is quite time-consuming to demonstrate this.
But what is the situation when manufacturers of operating systems more or less
copy users’ data by the billions without being asked? The question may be
asked (in line with the PDF file published here), what is the truth? What if
this content is not quite as it is presented (not uncommon in advertising)? Or
what happens if the data is subsequently altered?
The Apple boss has an amusing rainbow with a certain statement. What if the AI
in certain states has something against rainbows? Will the cloud AI present me
with a “neutral” water jet in these states? Or will unpleasant information be
filtered out in real time as it is displayed?
What chances do normal users still have today? In the face of tech companies
that are intruding into our daily lives, in the face of the media, which might
perhaps report a little more critically? In the face of state authorities, where it
takes a very long time for data protection and competition law violations to be
punished, if at all.
Open source, if it is used locally, is a good, probably the best, alternative here.
The Linux distribution AVMultimedia is designed precisely for this purpose,
Capt2PDF is available here from version 2024/VI in such a way that the user
alone decides whether Capt2PDF is used or not. It is a useful program for
recording screen content in such a way that Pandorra’s box does not have to be

https://archivista.ch/cms/wp-content/uploads/2024/06/apple2.jpg
https://archivista.ch/cms/wp-content/uploads/2024/06/screen-2024-06-11_092038.pdf
https://archivista.ch/cms

Capt2PDF with 2024/VI

© 2021 by archivista.ch | 12

opened. In other words, completely without AI and cloud, but simple,
transparent (100% open source) and locally and in real time on your own Linux
desktop.

Facebook

Twitter

https://www.facebook.com/sharer.php?t=Capt2PDF with 2024/VI&u=https://archivista.ch/cms/en/news/10401-2/
https://twitter.com/intent/tweet?text=Capt2PDF with 2024/VI&url=https://archivista.ch/cms/en/news/10401-2/&via=
https://archivista.ch/cms

